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Abstract

Complex tissues, such as the brain, are composed of multiple different cell types, each of which have distinct and important
roles, for example in neural function. Moreover, it has recently been appreciated that the cells that make up these sub-cell
types themselves harbour significant cell-to-cell heterogeneity, in particular at the level of gene expression. The ability to
study this heterogeneity has been revolutionised by advances in experimental technology, such as Wholemount in Situ
Hybridizations (WiSH) and single-cell RNA-sequencing. Consequently, it is now possible to study gene expression levels in
thousands of cells from the same tissue type. After generating such data one of the key goals is to cluster the cells into
groups that correspond to both known and putatively novel cell types. Whilst many clustering algorithms exist, they are
typically unable to incorporate information about the spatial dependence between cells within the tissue under study.
When such information exists it provides important insights that should be directly included in the clustering scheme. To
this end we have developed a clustering method that uses a Hidden Markov Random Field (HMRF) model to exploit both
quantitative measures of expression and spatial information. To accurately reflect the underlying biology, we extend current
HMRF approaches by allowing the degree of spatial coherency to differ between clusters. We demonstrate the utility of our
method using simulated data before applying it to cluster single cell gene expression data generated by applying WiSH to
study expression patterns in the brain of the marine annelid Platynereis dumereilii. Our approach allows known cell types to
be identified as well as revealing new, previously unexplored cell types within the brain of this important model system.
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Introduction

Complex organisms are heterogeneous at several levels. For

example, one can divide the body into functional organs: the skin,

the brain, the liver and so on. This anatomical and functional

classification implies that distinct organs are composed of different

cell types. Interestingly, these functional building blocks are also not

composed of homogeneous cell types. Indeed, they are composed of

several tissues that together make up a complex organ. For example,

the skin of mammals can be described as the superposition of the

Epidermis, Dermis and Hypodermis [1]. However, even with this

more precise description, each of these tissues will be heterogeneous.

For instance in the Dermis, the cells making up the sweat glands will

not be the same as the cells in the hair follicles. Additionally, this

heterogeneity does not stop at this sub-sub classification: heteroge-

neity is still present and, with fine enough measurements methods,

this remains true to the single cell level [2].

When reducing the scale of study, the classification of cells into

distinct groups ceases to be anatomical. Instead, molecular biology has

allowed scientists to define molecular characteristics that distinguish

individual cells. The most widely used characteristic is mRNA

expression, and gene expression signatures are now commonly used

to define cell types [3,4]. Conceptually, if a set of cells have similar

expression profiles, this information can be used to gather these cells

into a specific cell type; we focus on this, molecular, definition of a cell

type in the remainder of this manuscript.

To do this, gene expression measurements at the single cell level

within the tissues under study are necessary. Recent technological

developments have facilitated this shift from tissue to single cell

resolution: in-situ hybridization [5] in a few organisms including

P. dumerilii and single cell RNA sequencing assays [6] are

amongst a number of methods that allow gene expression to be

measured at the single cell level [7]. Given this, one key challenge

is to develop computational methods that use the expression data

to cluster single cells into robust groups, which can then be

examined to determine their likely functional roles.

Many popular clustering methods (e.g., hierarchical clustering,

k-means and independent mixture models) exist and can be

applied to address this problem [8–10]. However, these methods

fail to take into account the spatial location of each cell within the

tissue under study — when such information is available [3,11,12],

it is extremely useful and should be incorporated into the
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downstream analysis. Specifically, we can hypothesise that cells

that are close together are more likely to belong to the same cell

type. In other words, if a cell has a "slightly" more "similar"

expression profile to a typical cell in cell type b than in cell type a
but all the surrounding cells have been classified as belonging to

cell type a it seems sensible to assign this cell to cell type a.

However, it is also important to note that cell migration, which

takes place during the development of complex tissues, can lead to

isolated cells with very different expression profiles than their

neighbours, which also needs to be accounted for.

To address these problems and, in particular, to utilise both the

spatial and the quantitative information, we extended a graph

theoretical approach developed for image segmentation to

reconstruct noisy or blurred images [13], a method that finds its

roots in the field of statistical mechanics as the Ising model [14]

and its generalization, the Potts model [15]. The core concept of

this method (Figure 1) is to estimate the parameters of a Markov

Random Field based model using mean-field approximations to

estimate intractable values as described in [16]. We use an

Expectation-Maximization (EM) procedure to maximize the

parameters as described in [13,16]. To the best of our knowledge,

such methods have not previously been applied to 3-Dimensional

gene expression data. Additionally, from a theoretical perspective,

we extended current models by allowing the degree of spatial

cohesion per cluster to differ, thus allowing for the possibility that

some cell types are more spatially coherent than others. After

validating our approach using simulated data, we demonstrated its

utility by applying it to data generated using methods described in

Tomer et al. [3] who were interested in studying the ancestral

bilaterian brain.

Results

Motivating data: Single cell in-situ hybridization in
Platynereis dumerilii

Tomer et al. [3] used Wholemount in Situ Hybridisation

(WiSH) to study the spatial expression pattern of a subset of genes,

at single cell resolution, in the brain of the marine annelid

Platynereis dumerilii 48 hours post fertilization (hpf). P. dumerilii,

is an interesting biological model, sometimes considered a "living

fossil" as it is a slow-evolving protostome that has been shown to

possess ancestral cell types, and thus may provide a better

comparison with vertebrates than fast evolving species like

Drosophila and nematodes where derived features can obscure

evolutionary signal [17,18].

Wholemount in-Situ hybridization (WiSH) is an experimental

technique where the practitioner uses labelled probes designed to

be specific to a given mRNA to determine in which cells of the

tissue under study that message is expressed. For a small organism

like Platynereis, the staining can be applied to the whole animal

and a 3-Dimensional representation of the expression pattern of a

gene can be deduced using confocal microscopy to study the

patterns of gene expression slice by slice. In practice, following the

staining, imaging and alignment, the brain volume was partitioned

into 32,203 3mm3 voxels. The 3mm3 volume was chosen to be

slightly smaller than the average cell in Platynereis’s brain but it is

possible to consider this grid as a simple cellular model where each

voxel roughly corresponds to a cell in the brain. Within each voxel,

the light emission (assumed to be correlated to the gene’s

expression level) was measured (Figure 2). Theoretically, this

luminescence data is quantitative but, on such a small scale, light

contamination between voxels means that the quantitative

measurements have to be interpreted with caution (Figure 3).

Additionally, the light efficiency of probes can differ leading to a

high experiment-to-experiment variability. Consequently, we

binarized the dataset by setting the value of expression within a

voxel to 1 or 0, depending upon whether the gene was or was not

expressed, respectively (see Discussion).

By repeating this process with different probes, expression

patterns for 86 genes of interest were mapped. Importantly, due to

the stereotypic nature of early Platynereis development [17], the

expression patterns can be overlaid, meaning that for each 3mm3

voxel it is possible to determine which subset of the 86 genes is

expressed. We can represent this information in a 86|32,203
matrix of binary gene expression, where the location of each voxel,

roughly representing a cell within the brain, is referenced in a 3D

coordinate system. Given this coordinate system, we can create a

neighbouring graph representation, where each node in the

equivalent undirected graph corresponds to a voxel in the in-situ

data. The edges of the graph were computed following a simple

neighbouring system taking only the 6 closest neighbours, one in

each direction of the 3D space.

Clustering method
Markov random fields (MRF) are statistical models that provide

a way of modeling entities composed of multiple discrete sites such

as images where each site is a pixel or, in our case, a biological

tissue where each site is a single voxel roughly corresponding to a

cell, in a context-dependent manner [19]. MRF based methods

find their roots in the field of statistical mechanics as the Ising

model [14] and its generalization, the Potts model [15]. Since

then, they have been and are still mainly used in the field of image

analysis, and the literature about them is ever growing [20–22].

More specifically, MRF methods are found in a wide range of

applications such as image restoration and segmentation [23],

surface reconstruction [24], edge detection [25], texture analysis

[26], optical flow [27], active contours [28], deformable templates

[29], data fusion [30] and perceptual grouping [31]. MRFs have

also been used in a variety of biological applications from

analysing medical imaging data [23,32,33] to analysing networks

of genomic data [34]. Additionally, the Cellular Potts Model [35]

has been used to model tissue development at a sub-cellular

resolution.

Author Summary

Tissues within complex multi-cellular organisms have
historically been defined in terms of their anatomy and
function. More recently, experimental approaches have
shown that different tissues express distinct batteries of
genes, thus providing an additional metric for characteris-
ing them. These experiments have been performed at the
whole tissue level, with gene expression measurements
being "averaged" over millions of cells within a tissue.
However, it is becoming apparent that even within
putatively homogeneous tissues there exists significant
variation in gene expression levels between cells, suggest-
ing that additional cell subtypes, defined by distinct
expression profiles, might be obscured by "bulk" experi-
mental approaches. Herein, we develop a computational
approach, based upon Markov Random Field models, for
clustering cells into cell types by exploiting their gene
expression profiles and location within the tissue under
study. We demonstrate the efficacy of our approach using
simulations, before applying it to identify known and
putatively novel cell types within the brain of the
ragworm, Platynereis dumerilii, an important model for
understanding how the Bilaterian brain evolved.

Single Cell Clustering
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Mathematically, MRF models are built around two comple-

mentary sub-models. The field represents the sites and their spatial

structure. The Hammersley-Clifford (1971) theorem states that the

probability distribution of the Markov field can be represented as a

Gibbs measure, which incorporates an energy function into which

the spatial coherency parameters of the model are incorporated.

Some critical choices in terms of the modeling framework are the

structure of the neighbourhood system and the energy function.

The emission model is used to describe the underlying data (gene

expression measurements in our case) and it is necessary to make

some assumptions about its form depending upon the underlying

data.

In our study the goal is to allocate the S~32,203 voxels

described above into K clusters, where K is unknown, using the

binarised matrix of M~86 gene expression measurements, Y . To

incorporate spatial information into our clustering scheme, we

assume that Z, the (latent) vector of length S that describes the

allocation of voxels to clusters, satisfies a first-order Markov

Random Field (MRF), where the probability that a voxel is

allocated to a given state depends only upon the states of its

immediate neighbours. Additionally, within cluster h (h[1,::,K),
we assume that the expression of gene m follows a Bernoulli

distribution with parameter hm,h; we denote the full set of Bernoulli

parameters using the M|K matrix H. In a typical MRF, the

degree of spatial cohesion is determined by a single parameter b,

which is assumed to be constant for all clusters [36,37]. However,

in the context of tissue organisation, it is reasonable to expect that

the degree of spatial cohesion will differ between clusters;

consequently, we estimate a separate value of b for each of the

K clusters (Methods). To estimate the parameters we use a fully-

factorized variational expectation maximization (EM) approach in

conjunction with mean-field approximations to infer intractable

values [16]. To choose the optimal number of clusters, K , we use

the Bayesian Information Criterion (BIC).

Model validation and comparison with alternative
approaches

Simulating data with a spatial component is a non-trivial

problem. Existing methods rely on MCMC approaches as

described in [38]. However, in our case with a relatively large

number of nodes in the graph (*32,000), this is computationally

expensive. To overcome this problem, we exploited the fact that

the Platynereis dataset already possesses a spatial structure, and

use this as a synthetic example on which to base our simulations.

As outlined in Figure 4, we start by clustering the gene expression

data using different values of K and store the corresponding

parameter estimates. Subsequently, the estimated Bernoulli

parameters, H, were used to simulate binarised gene expression

data from K clusters where, for each voxel contained within

cluster h, the expression of gene m is simulated from a Bernoulli

distribution with parameter hm,h (Figure 4).

Next, each simulated voxel was assigned to the same spatial

location as the corresponding voxel in the biological dataset. As a

result, the simulated and the biological datasets have the same

neighbouring graph. We can then cluster these simulated datasets

using the method outlined above and determine how accurately

we can estimate the parameters (b,H) and choose the correct

number of clusters, K .

The most important criterion for assessing the efficacy of our

approach is the similarity between the inferred and true clusters.

This also implicitly assesses the accuracy of the estimation of H: if

the inferred and true clusters are identical, the estimates of H must

Figure 2. Wholemount in-situ hybridization expression data
for 86 genes in the full brain of Platynereis. The whole larvae is
hybridized with two dyed probes targetting specific mRNAs, one
corresponding to a reference gene and the other a gene of interest.
Using confocal microscopy, the whole larvae is visualized slice by slice
and the dyed regions are reported with laser light reflecting back to the
detector. Every image is then divided into &1 cell large squares which
allows the reconstruction of the 3D map of expression for the two
genes in the full brain. The process was repeated 86 times for key genes
in Platynereis development [3].
doi:10.1371/journal.pcbi.1003824.g002

Figure 1. Schematic representation of the influence of spatial
coherence when clustering noisy data. Panel A shows an example
of noisy data for the expression of two genes as well as the resulting
binarised table of expression for four cells in the assay. Panel B shows
the reference represented by 3 spatially coherent cell types inside an
empty area. Panel C shows the influence of the spatial smoothness/
coherency parameter on the clustering results.
doi:10.1371/journal.pcbi.1003824.g001

Single Cell Clustering
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be equal to the true values. In practice, we used the Jaccard

coefficient to compare the inferred and the true clusters (Methods),

where a Jaccard coefficient of 1 implies perfect agreement. To

benchmark our approach’s performance, we also assessed the

ability of two other models to cluster the simulated data:

hierarchical clustering (hClust), a very widely used approach in

genomics and elsewhere, and an independent mixture model,

which allows the relative improvement in performance added by

the spatial component to be studied.

Additionally, the likelihood function that needs to be maximised

possesses many stationary points of different natures. Thus, conver-

gence to the global maximum with the Expectation-maximisation

algorithm (see Methods section), depends strongly on the parameter

initialisation. To overcome this problem, different initialisation

strategies have been proposed and investigated (see for instance [39–

41]). Herein, we compare a random initialisation scheme with an

initialisation based upon the solution obtained by applying hClust.

The results of these experiments are shown in Figure 5 for
~KK[½4,70�. Our method, when used with a random initialization

scheme (Methods), has an average Jaccard coefficient of 0:8, and

clearly demonstrates better performance than the other methods.

The second best performing method is the independent mixture

model with a random initialization, which has an average Jaccard

coefficient of 0.7. Since the independent mixture approach is

equivalent to the MRF with all the b parameters set equal to 0 (i.e.,

without a spatial component) this suggests that accounting for the

spatial aspect yields improved results. Given this, it is perhaps

unsurprising that hClust also performs relatively poorly. Addition-

ally, we note that initializing the MRF with the hClust output

yields results that are superior to those generated by hClust but

that are still poorer than either the randomly initialized

independent mixture model or the MRF approach. This is likely

explained by noting that, depending upon the initialization, the

EM algorithm might converge to a local maximum. Consequently,

Figure 3. Light contamination in in-situ hybridization luminescence data. Panel A shows the raw fluorescent microscopy capture of the
gene Ascl’s expression for one layer in the brain of Platynereis. Panel B shows the light intensity measured along the red line in panel A. Panel C
shows the expected light intensity profile without light contamination. Because of the small scale of study, voxels surrounded by other voxels
expressing a particular gene will have a higher intensity values because of nearby light contamination. Panel D shows errors introduced by the voxel
cell model. Path a shows how regions with highly expressed genes can introduce errors through light contamination. Path b shows how some voxels
may appear artificially void of expression because of the uneven distribution of transcripts inside the cytoplasm especially for large cells.
doi:10.1371/journal.pcbi.1003824.g003

Single Cell Clustering
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for the rest of this study we use the random initialization strategy

to initialize the EM algorithm.

As well as directly comparing the clusters, we can also determine

how accurately the b parameters are estimated. To this end, in

Figure 6 we compare the true and inferred mean values of b for

different values of K . The values of b increase with K , which is to be

expected since more clusters implies the existence of more transition

areas, thus making an increase of b necessary to maintain the optimal

spatial coherency of the model. Figure 6 also shows a slight but

consistent underestimation of b. This can be explained by noting that

the simulation scheme used may reduce the spatial coherency within

clusters. Specifically, as illustrated in Figure 7, clusters may not

display homogeneous expression of a given gene: instead, depending

upon the value of h, a gene will be expressed only in a fraction of

voxels. In reality, the voxels in which such genes are expressed may

have a coherent spatial structure within the cluster that is lost in the

simulation, thus explaining the consistently smaller values for b that

are estimated. To confirm this, we performed a second simulation

using the parameter values estimated from the first simulation as a

reference. In this context we did not expect any further loss of spatial

coherency, which was indeed confirmed as shown by the blue curve

in Figure 6.

To validate further our estimation of b, we randomized the

coordinates of the voxels to lose any spatial component before re-

clustering the data. As expected, we observed that the estimates of

b were very close to 0 for all clusters (Figure 6), as well as there

being very similar Jaccard coefficient values (relative to the true

values) for the independent mixture and the MRF model. Both of

these observations provide confidence in our assertion that the

spatial component plays an important role in the fit.

Finally, we assessed the ability of the model to choose the

correct number of clusters, K . To do this, we noted the "true"

number of clusters underlying the simulated data and compared

this with the chosen value, K̂K . The results for two representative

choices of K are shown in Figure 8 and demonstrate that our

clustering approach, in conjunction with the BIC, is able to

accurately determine the optimal number of clusters.

Biological interpretation
After validating our method using simulated data, we next

studied the biological meaning of each of the K~33 clusters

generated by applying the HMRF model to the real data. To do

this, we combined each cluster’s spatial location with its

corresponding expression parameter hh~(h1,h, . . . ,hm,h). The

latter parameter allows a stereotypical expression "fingerprint" to

be associated with every cluster.

In practice, not all of the 86 genes will provide insight into the

biological function of a given cluster. For instance, in the case of a

ubiquitously expressed gene, g, the value of h:,g will be high for all

clusters. To overcome this problem, we developed a score, S, for

each gene, m and each cluster h, where:

sm,h~
hm,hXK

a~1
hm,a

:

For each gene, m, and cluster, h, sm,h is large if gene m is specific

to cluster h. Consequently, the top scoring 3 or 4 genes for each

cluster will represent a specific stereotypical expression pattern

that will help us infer or confirm the identity of the functional

tissue represented by each cluster.

To provide confidence in our approach, we first considered well

characterised regions within the Platynereis brain. Arguably the

best-studied regions of the brain in Platynereis are the eyes: the

brain has 4 eyes, two larval and two adult, and their locations and

expression fingerprints are well known. As shown in Figure 9A,

our approach generates two spatially coherent clusters that

correspond to each of these regions. Importantly, the genes that

best characterise these clusters are biologically meaningful: rOpsin
and rOpsin3, both members of the well-described opsin family of

photosensitive molecules [42,43], best distinguish the adult eye

and larval eyes respectively, consistent with the in-situ data images

shown in Figure 10. As well as the eyes, a second region of the

Platynereis brain, the mushroom bodies (which corresponds to the

pallium, layers of neurons that cover the upper surface of the

cerebrum in vertebrates [3]), are also clearly identified by our

approach (Figure 9B).

As well as identifying clusters corresponding to known cell types,

we also identified clusters that might correspond to less well

studied subtypes with specific biological functions. In Figure 11,

the green cluster defines a region on the basal side of the larvae

that can be associated both by its localization and by its most

representative genes (MyoD [44,45] and LDB3 [46,47]) with the

starting point of the developing muscles of the adult animal.

Indeed, MyoD has been shown to play a key role in the

differentiation of muscles during development in vertebrates and

invertebrates [44,45] and LDB3 codes for the protein LDB3,

Figure 4. Simulation scheme used to generate gene expression
data with a spatial component and known parameters. The
values of H are used to generate a dataset of clusters with the same
gene expression profile as the reference. Each simulated voxel is then
assigned to its corresponding spatial localization so that the simulated
data keeps the spatial component of the biological data.
doi:10.1371/journal.pcbi.1003824.g004

Single Cell Clustering
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which interacts with the myozenin gene family that has been

implicated in muscle development in vertebrates [47].

Given the location of the eyes and the developing muscles, the

location of the pink cluster in Figure 11 is interesting. This cluster

surrounds the larval eyes, the adult eyes and reaches the

hypothetically developing muscles described above. Looking at

the most representative genes for this pink cluster, it is interesting

Figure 6. Validating the estimation of beta. This figure shows the
evolution for K[½4,80� of the mean value of b across all the clusters. The
red dots represent the biological data clustering (i.e the reference in our
simulations scheme). The green dots represent the results obtained
after clustering simulated data, which shows an underestimation of b.
To confirm that this underestimation come from the simulation scheme
and not the clustering method, we used the simulated data as the
reference to generate a "second generation" of simulated data,
suppressing the simulation scheme bias (see Figure 7). The results of
this re-simulation are shown by the blue dots, which exhibit no
underestimation of b. Finally the brown dots represent the mean value
of b on the same simulated data but spatially randomized, as expected
the b are now estimated to 0.
doi:10.1371/journal.pcbi.1003824.g006

Figure 7. Decrease in spatial coherency due to the simulation
scheme. For an example cluster h, gene m may only be expressed in
half of the voxels. This will yield hm,h~0:5. However, in the biological
data, the voxels expressing gene m may be spatially coherent (i.e.,
located close to one another), leading to a reduced area of expression
discontinuity (the green line). By contrast, in the simulated data the
expression of such a gene will lose its spatial coherency, leading to an
increased area of expression discontinuity. The number of voxels having
a neighbour with some differences in the gene expression pattern is
directly linked to the value of bh through the energy function
(Methods). This explains the underestimation of b observed in Figure 6.
doi:10.1371/journal.pcbi.1003824.g007

Figure 5. Jaccard coefficient between ‘‘true’’ and resulting clusters on the simulated data with different methods and
initializations. Panel A compares the performance of the MRF method with a randomly initialization with an independent mixture model also with
a random initialization, the MRF method initialized with the hClust classification and hClust alone on data simulated with a spatial component. Panel
B shows the Jaccard coefficient for the MRF method and independent mixture model both with a random initialization; in this case both methods are
applied to simulated data that lacks a spatial component.
doi:10.1371/journal.pcbi.1003824.g005

Single Cell Clustering
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to note the presence of Phox2, a homeodomain protein that has

been shown to be necessary for the generation of visceral motor-

neurons (neurons of the central nervous system that project their

axons to directly or indirectly control muscles) as described

generally in [48] and in Drosophila [49]. The second most

representative gene, COE, has also been shown to play a role in

Platynereis and Drosophila neural tissue development [50]. In this

context, although we lack biological validation, we can hypothesise

that the cells within this particular cluster could be developing

neurons that link the eyes to the muscles of Platynereis. Although

this hypothesis remains purely speculative and would need

validation in the laboratory, we believe this example is an

interesting proof-of-concept that our clustering method can prove

useful for hypothesis generation. Indeed, the analysis of the

parameter values and the spatial localization attached to the

clusters has allowed us to place with a reasonable level of

confidence a functional hypothesis about a tissue that was not

clearly defined either spatially or functionally. It is also interesting

to note that hClust does not separate either putative region when

clustering the same data with the same number of clusters.

When we used an independent mixture model approach (i.e.,

with no spatial component) to cluster the data the results were more

comparable to those obtained when using the HMRF strategy.

However, as can be observed when comparing Figures 12 and 11,

the clusters generated via the independent EM approach are

considerably noisier and, as expected, less spatially coherent than

those generated by the HMRF model. Further, for the developing

muscle region, this noise is linked to biological imprecisions. When

compared to in situ data generated by Fischer et al. [17], who used a

phalloidin in situ stain to investigate the location of the muscles at

Figure 8. Estimating the BIC from the simulated data. The BIC is
plotted on the y-axis for different values of K on the x-axis. The red and
the grey points correspond to the BIC estimated when the underlying
data have 17 and 7 clusters, respectively. The minimum BIC value is 18
and 7, respectively, suggesting that the MRF approach in conjunction
with the BIC well estimates the optimal number of clusters.
doi:10.1371/journal.pcbi.1003824.g008

Figure 9. Eyes and mushroom bodies in the brain of Platynereis as clustered by the HMRF method. Panel A: Adult and larval eyes in
separate clusters with their top 3 most representative genes. Panel B: Mushroom bodies and their most representative genes. This visualization has
been captured using the software bioWeb3D [53].
doi:10.1371/journal.pcbi.1003824.g009

Figure 10. In-situ hybridization image for rOpsin and rOpsin3
in the full brain at 48hpf (Apical view). Z-projection of the
expression of rOpsin (red) in both the adult eyes and the larval eyes,
rOpsin3 (green) specifically in the larval eyes and co-expression areas in
some areas of the larval eyes in the full brain of Platynereis at 48hpf. This
image been obtained directly from the data obtained in [3].
doi:10.1371/journal.pcbi.1003824.g010

Single Cell Clustering
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this developmental stage, it can be observed that the muscles are

restricted to regions located away from the axes of symmetry, more

consistent with the HMRF clustering output. Similarly, the

independent mixture model method associates to the hypothesized

region of developing neurons around the eyes, some ventral areas

that seem unlikely to belong to the same sub tissue. Consequently, it

seems likely that the HMRF not only performs better than the

independent mixture model on simulated data but also better

reflects the underlying biology.

Discussion

Data binarization
As shown in Figure 3, we overcame problems linked to light

contamination by binarizing the "quantitative" luminiscence infor-

mation. To do this, it is necessary to specify a threshold above which a

gene is considered expressed. Ideally the same threshold would be

applied to all genes — however, when we examined the density plots

of light intensities for each gene we observed significant differences

that rendered such an approach impossible. Specifically, for some

genes, the density of intensities clearly separated the voxels into two

groups, corresponding to those where the gene is expressed and

unexpressed, respectively (Figure 13 (left)). For the remaining genes,

however, the density plot was diffuse, with no clear separation of the

voxels into expressed and unexpressed clusters (Figure 13 (right)).

Consequently, we binarized each gene manually by choosing an

optimal threshold based upon inspection of the raw fluorescent

microscopy images. This is possible since the number of genes under

study is relatively small. However, as the number of genes for which

data is available increases (as will be the case, for example, with single-

cell RNA-sequencing studies), an automated method, perhaps based

upon mixtures of Gaussians in the context of the WiSH data, will be

required.

Importantly, if the noise level in single cell expression datasets

decreases to the extent where we can safely consider the results

as quantitative, our method can easily be transformed to take

this feature into account. The general outline of the model will

stay exactly the same, the change will occur in the emission

distribution. Instead of representing a Bernoulli parameter for

each gene and each cluster, each hm,h could instead represent

the parameter of a Poisson distribution.

Validity of the model’s independence hypothesis
In our model we assume that, conditional upon the allocation of

a voxels to a cluster, the gene expression levels can be described by

independent Bernoulli distributions. This is a reasonable assump-

tion in the context of the 86 genes chosen by Tomer et al. [3],

since they were selected to have largely orthogonal expression

profiles. In other words, they were chosen since they were known

to correspond to distinct and potentially interesting regions of the

Platynereis brain. However, in many other settings a larger

number of genes, many with correlated expression profiles (i.e.,

genes in the same regulatory network) will be profiled and this

assumption will be invalid. Consequently, extending the model to

allow for dependence structure in the emission distributions will be

a critical challenge. Additionally, as the number of genes increases,

our approach for choosing the most specific genes will become less

practical. Instead, entropy based approaches, such as the Kull-

back-Leibler divergence, might be more suitable.

Summary
In summary, we have illustrated, using both simulations and real

data, that accounting for spatial information significantly improves

our ability to cluster voxels roughly representing brain cells into

coherent and biologically relevant sets. While our approach

converges very quickly (on the order of minutes) for the motivating

dataset described herein, as the volume of data increases (i.e., by

assaying the expression levels of thousands of genes in each cell

using single-cell RNA-sequencing) it will be important to carefully

investigate how easily our model scales. Nevertheless, we anticipate

that our method will play an important part in facilitating

interpretation of single-cell resolution data, which will be an

increasingly important challenge over the next few years.

Methods

In this section we describe the Hidden Markov Random Field

based approach that we developed to cluster the in-situ

Figure 11. A putative tissue of developing neurons between
the eyes and the larvae’s developing muscles. The yellow and red
clusters are the eyes as seen on figure 9. The green cluster represents
the developing muscles on the basal side of the larvae, as the location
and the most specific genes strongly suggest. The pink cluster is a
putative tissue that makes an interesting link between the eyes and the
muscles. The most representative gene of this tissue is Phox2, a
homeodomain protein required for the generation of visceral motor-
neurons in Drosophila [49]
doi:10.1371/journal.pcbi.1003824.g011

Figure 12. Clusters obtained with the independent mixture
model. The Adult eyes are well isolated (red). The larval eyes (yellow) as
well. The muscles and the region of potential developing neurons are
picked up as well. However if all the regions are recognizable, they are
extremely poorly defined spatially with a lot of noise and little spatial
coherency. This noise leads to biologically incoherent regions to be
clustered with known cell types, particularly for the potential pool of
developing neurones as well as the developing muscles.
doi:10.1371/journal.pcbi.1003824.g012
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hybridization data into K clusters (K[½2,?½). Subsequently, we

will describe our approach for choosing K .

Let yi~fy1,i, . . . ,yM,ig be the gene expression measurement for

each voxel i[S~f1, . . . ,Ng where M is the number of considered

genes. Originally, 169 gene expression patterns where generated, but

due to experimental constraints — confocal laser microscopy

artefacts and high background noise in some samples — we filtered

out 83 of those genes to create a gold standard dataset with M~86
manually validated genes. Our goal is to assign each voxel, i, to one of

the K possible clusters. We define a set of discrete random variables

Z~fZi,Vi[Sg that represents the cluster each voxel is assigned to.

Each Zi takes a value in f1, . . . ,Kg denoting the K possible clusters.

The aim of the method is to restore the unknown clustering structure

with regard to gene expression similarity as well as spatial

dependencies between voxels. To do this, we assume that the Zi

are dependent variables and we encode the spatial relationship using

a neighbourhood system defined through a graph G.

In this work, we use a first order neighbourhood system, i.e, the 6

closest sites. The set of voxels is then represented as a graph G with

edges projecting from each voxel to its closest neighbours. The

dependencies between neighbouring voxels are modelled by assum-

ing that the joint distribution of fZ1, . . . ,ZNg is a discrete MRF:

PG(z; b)~W (b){1exp ({H(z; b))

where W (b) is a normalising constant summed over all the possible

configurations z that soon becomes intractable as the number of sites

increases. b is a set of parameters, and H is the energy of the field. This

energy can be written as a sum over all the possible cliques of the graph

G. We restrict this summation to the pairwise interactions and the

function H is assumed to be of the following form:

H(z; b)~
X

i*j

Vij(zi,zj ,b), ð1Þ

where Vij represents the pair-wise potentials, i.e the dependency

between zi and zj for two neighbouring voxels i and j. The Potts

model [15] traditionally used for image segmentation, is the most

appropriate discrete random field of the form of (1) for clustering

as it tends to allocate neighbours to the same cluster, thus

increasing the spatial coherency. The Potts model is defined by the

Energy function H :

H(z; b)~{b
X

i*j

1zi~zj

with b the interaction parameter between two neighbours. Note

that the greater the value of b, the more weight is given to the

interaction graph (i.e., there is more spatial cohesion). Although

this feature is appealing for clustering, the standard Potts model

penalizes the interaction strength in different clusters with the

same penalty. In practice, given the nature and the biological

context of our data, it may be more appropriate to allow cell

types that are more spatially coherent to have a higher value of b
(i.e stronger interaction) than other cell types, in other words to

use adaptive smoothness related to the type of cells in the cluster. To

this end, we propose a variant of the Potts model, which we define

as:

H(z; b)~{
X

i

bzi

X

i*j

1zi~zj

Figure 13. Densities of log luminescence values for two genes (rOpsin, PRDM8) over the 32,302 voxels. For rOpsin, the density exhibits
two clear peaks making the choice of a binarizing threshold easy. By contrast, for PRDM8 there is no such clear threshold, making an automated
binarization method hard to implement.
doi:10.1371/journal.pcbi.1003824.g013
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This extended version allows each cluster K to have its own

parameter for interaction strength. For the model to be fully

defined, we need to specify, besides the prior described above for

the labels Z, the emission model. To this end, a Bernoulli

distribution is used as the sampling distribution:

P(Yi~yiDZi~zi; h)~P
m[M

h
ym,i
m,zi

(1{hm,zi
)(1{ym,i )

The 86 genes selected can be considered as independent because

they are all key genes in the development of the brain of P.
dumerilii. Consequently, we can assume conditional independence

of the observed variables y given the clustering z. This leads to:

P(Y~yDZ~z; H)~P
i[S

P(Yi~yiDZi~zi;Hzi
)

The log likelihood of the complete model is thus given by:

P(y,zDH,�b)~

W (�b){1exp f{H(z; �b)z
X

i[S

log (P(Yi~yiDZi~zi; H))g

We denote the parameters of the model as y~fb,Hg.
As mentioned before, our aim is to assign each voxel i to one of

the K possible clusters. To do so, we chose to consider the

Maximum Posterior Marginal (MPM) that maximizes

P(Zi~hDy,y), where the y are unknown and need to be

estimated. We solved this problem using the EM algorithm [51].

For HMRFs, contrary to independent mixture models, the exact

EM can not be applied directly due to the dependence structure

and some approximations are required [13]. We chose to use

approximations based on the Mean field principle [16]. We used

this to approximate the posterior probabilities t
(l)
ih that voxel i

belongs to cluster h at iteration (l). We also used a mean-field

approximation to approximate the value of the intractable

normalizing constant W (b) (details are given in the Appendix).

Once the t
(l)
ih ’s are computed, we assign each voxel to the cluster h

for which this posterior probability is the highest.

After the E step, maximizing y is relatively straightforward. For

H, once the the t
(l)
ih ~p(Zi~hDy; y(l)) have been computed during

the E-step, we use those probabilities to assign each voxel to its

cluster at iteration (l). Once the new partition is created, the

maximization of H can be computed for cluster h[1,::,K and gene

m[M with Exprm,h the number of voxels expressing gene m in

cluster h and Numh the total number of voxels in cluster h.

h(lz1)
m,h ~

Exprm,h

Numh

To maximize b(lz1), we iteratively applied a gradient ascent

algorithm, the positive version of the gradient descent algorithm

[22] to the function Rz(bDy(l)) for each b(lz1)
h ,h[1,:::,K

A detailed description of the algorithm is described in Text S1.

Choosing K
To select the optimal number of clusters we used the BIC [45],

which finds the optimal number of clusters, K̂K , by selecting the

value of K that minimises its value. However, due to the symmetry

of the brain we used a slightly different approach. As shown in

Figure 14 (blue dots), the BIC does not reach a clear minimum

when applied to all voxels in the brain but instead reaches a

plateau after a given number of clusters. This is most likely due to

the highly, but not perfectly symmetrical nature of the brain: with

a small K , the same "tissue" on both the left and the right hand

side of the brain will belong to the same cluster. However, because

the two sides of the brain are not perfectly symmetrical, as K
increases the left and right part of the same "tissue" will be

clustered separately. As a result, the likelihood continues to

increase sufficiently to explain the flattened BIC curve. Moreover,

this hypothesis seems to be confirmed by the fact that when

computing the BIC on the right and left side of the brain

separately, the curve has in both cases a clear minimum as shown

in Figure 14 (red and green dots). Given this, we opted to choose

K̂K as the point where the BIC curve reaches a plateau.

Data and code availability
The data are available as a binarized datset of single cell gene

expression data for the 86 genes in the brain of Platynereis
dumerilii. An implementation of the EM algorithm in the C

programming language is also available on the Github page of the

project [52].

Supporting Information

Text S1 Mean field approximations and EM procedure.
We provide more information about the mean field approximation

used to estimate both the conditional probabilities of a voxel

belonging to a particular cluster given the parameter values as well

as the intractable normalizing constant. We also present pseudo-

Figure 14. BIC results on biological data. Results are shown for
K[½4,80� (x axis) with the full brain, and the two left and right half
separately. The y axis shows the BIC value in % of the highest BIC value
for each dataset.
doi:10.1371/journal.pcbi.1003824.g014
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code to outline the EM Mean-field algorithm used in our HMRF

implementation.

(PDF)
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